What rivers and coastal wetlands bring into the global ocean?

R. Savelli a, D. Menemenlis a, M. Simard a, D. Carroll b

^a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ^b Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA

SWOT Science Team Meeting, June 2022



Exports from rivers and coastal wetlands

- Large amount of carbon and nutrients delivered to the ocean:
 - Rivers: ~ 1 Pg C yr⁻¹ (Li et al., 2017)
 - Coastal wetlands: ~ 2 Pg C yr⁻¹ (Duarte et al., 2005)
- Natural drivers (ecosystem productivity, burial, river discharge, tidal inundation, disturbance)

Questions:

- 1. The contribution of rivers and coastal wetlands to the carbon cycle of the global ocean?
- 2. Response of the marine biological activity to these exports?

Method

Nutrient and carbon loads from rivers

River discharge (JRA55-do)

Nutrients loads (GlobalNEWS2)


Carbon exports from coastal wetlands

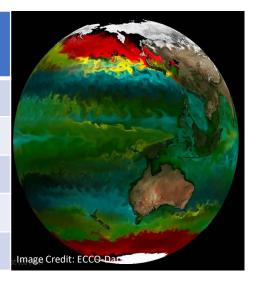
Landcover classification

Ecosystem productivity

Soil organic carbon

Tidal inundation (FES, TPXO, NS_tide)

Ocean biogeochemistry ECCO-Darwin model

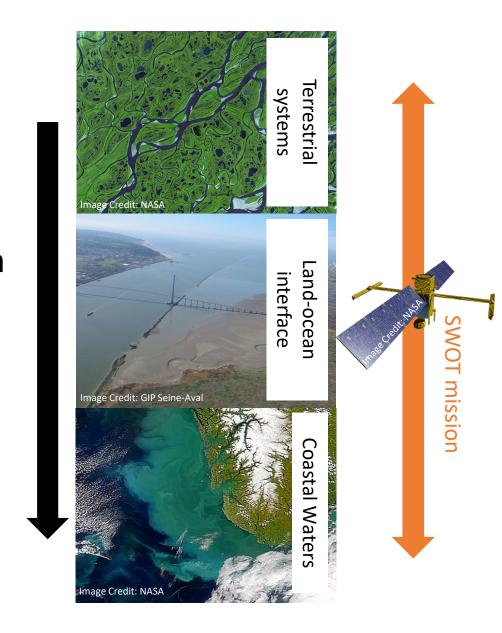

Data-assimilative

MITgcm

Darwin model

Radiative transfer

DIC budget



- Air-sea CO₂ fluxes
- Biological production
- Phytoplankton communities

Conclusion

A project that:

- Estimates carbon and nutrients transiting through the Land-Ocean aquatic continuum
- Quantifies their role in the ocean biogeochemistry
- Covers aquatic components encompassed by the SWOT mission
- Will benefit from the SWOT mission (river discharge, tidal inundation)

